Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing.

نویسندگان

  • Chiang-shan Ray Li
  • Cong Huang
  • R Todd Constable
  • Rajita Sinha
چکیده

Execution of higher cortical functions requires inhibitory control to restrain habitual responses and meet changing task demands. We used functional magnetic resonance imaging to show the neural correlates of response inhibition during a stop-signal task. The task has a frequent "go" stimulus to set up a pre-potent response tendency and a less frequent "stop" signal for subjects to withhold their response. We contrasted brain activation between successful and failed inhibition for individual subjects and compared groups of subjects with short and long stop-signal reaction times. The two groups of subjects did not differ in their inhibition failure rates or the extent of signal monitoring, error monitoring, or task-associated frustration ratings. The results showed that short stop-signal reaction time or more efficient response inhibition was associated with greater activation in the superior medial and precentral frontal cortices. Moreover, activation of these inhibitory motor areas correlated negatively with stop-signal reaction time. These brain regions may represent the neural substrata of response inhibition independent of other cognitive and affective functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Correlates of Post-error Slowing during a Stop Signal Task: A Functional Magnetic Resonance Imaging Study

The ability to detect errors and adjust behavior accordingly is essential for maneuvering in an uncertain environment. Errors are particularly prone to occur when multiple, conflicting responses are registered in a situation that requires flexible behavioral outputs; for instance, when a go signal requires a response and a stop signal requires inhibition of the response during a stop signal tas...

متن کامل

Impact of Orbitofrontal Lesions on Electrophysiological Signals in a Stop Signal Task

Behavioral inhibition and performance monitoring are critical cognitive functions supported by distributed neural networks including the pFC. We examined neurophysiological correlates of motor response inhibition and action monitoring in patients with focal orbitofrontal (OFC) lesions (n = 12) after resection of a primary intracranial tumor or contusion because of traumatic brain injury. Health...

متن کامل

Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks

Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...

متن کامل

Neural correlates of response inhibition in children with attention-deficit/hyperactivity disorder: A controlled version of the stop-signal task.

The stop-signal task has been used extensively to investigate the neural correlates of inhibition deficits in children with ADHD. However, previous findings of atypical brain activation during the stop-signal task in children with ADHD may be confounded with attentional processes, precluding strong conclusions on the nature of these deficits. In addition, there are recent concerns on the constr...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2006